Albedo and vegetation demand-side management options for warm climates
نویسنده
چکیده
For electric utilities, demand-side management (DSM) can reduce electric load and shift load from peak to off-peak periods. In general, the investor in DSM collects the reward with lower electric bills, excepting a positive externality because of reduced tropospheric and stratospheric air pollution from fossil fuel power plants. In warm climates, DSM options include increasing albedo and vegetation, respectively, by painting surfaces white and planting trees; these DSM options are distinguished from all other DSM options because of ecosystem effects. Ambient temperature falls, mitigating the urban ‘heat island’, which reduces electric load and ozone formation. The investor in albedo and vegetation DSM options does not collect all of the reward from lower electric bills, since the lower ambient temperature provides savings to all customers who use electricity for air conditioning and refrigeration. Similar to other DSM options, air pollution is also reduced as a result of lower power plant emissions. Complex airshed models and electric utility system dispatch models are applied in this paper to account for some of these ecosystem effects. Unaccounted ecosystem effects remain, stymieing cost effectiveness analysis. © 1998 Elsevier Science B.V.
منابع مشابه
Comparing supply side and demand side options for electrifying a local area using life cycle analysis of energy technologies and demand side programs
The main aim of this paper is to select the best portfolio of renewable energy technologies (RETs) for electrifying an elected area which is not connected to any other grids. Minimizing total costs of the system is considered as the main factor in finding the best decision. In order to make the optimum plan more applicable, the technique of life cycle analysis is applied. This technique takes i...
متن کاملBoreal forests, aerosols and the impacts on clouds and climate.
Previous studies have concluded that boreal forests warm the climate because the cooling from storage of carbon in vegetation and soils is cancelled out by the warming due to the absorption of the Sun's heat by the dark forest canopy. However, these studies ignored the impacts of forests on atmospheric aerosol. We use a global atmospheric model to show that, through emission of organic vapours ...
متن کاملExpansion of the world's deserts due to global warming and vegetation-albedo feedback
Many subtropical and mid-latitude regions are expected to become drier due to climate change. This will lead to reduced vegetation which may in turn amplify the initial drying due to positive feedbacks such as albedo change in response to biome redistribution, an effect rarely accounted for in climate projections. Using a coupled atmosphere-ocean-land model with a dynamic vegetation component t...
متن کاملValuing flexibility in demand-side response: A real options approach
The investment interests in the electricity industry are transmitted through various mechanisms to other economic activities. This paper considers methods for esteeming the adaptability of demand-side response (DSR) in its capacity to react to future uncertainties. The capacity to evaluate this adaptability is particularly critical for vitality frameworks speculations given their extensive and ...
متن کاملExpansion of the world’s deserts due to vegetation-albedo feedback under global warming
[1] Many subtropical regions are expected to become drier due to climate change. This will lead to reduced vegetation which may in turn amplify the initial drying. Using a coupled atmosphere-ocean-land model with a dynamic vegetation component that predicts surface albedo change, here we simulate the climate change from 1901 to 2099 with CO2 and other forcings. In a standard IPCC-style simulati...
متن کامل